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Images are corrupted
by noise...

i)  When measurement Of
some physical parameter is

performed, hoise
corruption Cahhot be
avoided.

jii) Each pixe| of a digital image
measures a humber oOf
photons.

Therefore, from i) and ii)...

...Images are corrupted by
noise!

http://ais-lab.dsi.unimi.it 3/46

o

A general framework

y f={f, f, fu}, fORV e.g. Pixel true luminance
» 9={91, & Gu} 9 O RN e.g. Pixel measured luminance

» g=Af+h+v -> determining f is a deblurring problem (the
measuring mean transforms the image: scale + offsef
»g=1f+v -> determining f is a denoising problem (the
image is a copy of the real one with the addition of ngise)

N

It is a general framework. It is a linear framework.

h is the background radiation
visthenoise
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Gaussian noise and likelihood j 4i

Images are composed by a set of pixels, f (f is a vector!)

Let us assume that the noise is Gaussian and that its mean and variance is equal
for all pixels;

Let g, ; be the measured value for the i-th pixel (n = noise);

Let and f, be the true (noiseless) value for the i-th pixel;

How can we quantify the probability to measure the image f, given the probability
density function for each pixel?

Likelihood function, L(g,, | f):

L(gn”;W):ij(gn,iHi):lj 1 _%(gn,i_fiJz

ex
o2 o

L(g, | f) describes the probability to measure the image g,,, given the noise free
value for each pixel, f. But we do not know these values....

5746 50f 72

. . . .4k
Statistical formulation of image restauratloﬁ

Measuring an imagg taken from an objecf, we want to determing wheng is corrupted
by noiseig, = Af + b + noise > f? It is a typicalnver se problem.

A is a linear operator that describes the transfaamgmapping) fronf to g (e.g.
perspective projection, sensor transfer functior, | for denoising ...).

b is the background radiation. It is the meagyr@hen no signal arrives to the sensor.

Each pixel is considered an independent procesise(whise) For each pixel therefore, we
want to findf that maximize: [, ; f)

Being the pixels independent, the total probabdén be written in terms of product of
independent probabilities (likelihood function):

N

e =[] p(g,: f,)

L is the likelihood function ofy,, given the objedt
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Do we get anywhere? 4i

L is the likelihood function ofy,, given the objedt

N

L(gn;f)=|'J p(g;: f,)

Determine {} such that L is maximized. Negative log-likelihotsdusually considered to
deal with sums:

~log(L(.) = —Z:In(p(gn.i: f)

f(gn‘l, Oz Onni Frar Fozeees Fan ;O,J): —Zh_‘: In{ 1 Eexp{—l(g"v'a_ i Jz}} = f= (ATA)'lATgn

NeY 2 i
" 1 1N ifA=1
i = i — _ L o— . 2 —
mln((”f ()= mln{ iglln[\/ﬁa}- 20° igl(gn'l f') } f=0,

{1}

The system has a single solution, that is good.sbhgtion is f= g, ;, not a great result....

Can we do any better?

7 of 72
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Overview :
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Filtering images
MAP, Tikhonov and Poisson model of the noise
A-priori and Markov Random Fields
Cost function minimization
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The Bayesian framework J:Z

We assume that the object f is a realization of éhstract” object F that can be
characterized statistically as a density probahilit F. f is extracted randomly from F.

The probability p(g f) becomes a conditional probability; JIp(g,| f = )

Under this condition, the probability of observingnd g, (joint probability) can be
written as the product of the conditional probagpilip(g, | f) by a-priori probability
onf, p

p(g, = p(@, | f)p;

As we are interested in determining f, we have titevthe conditional probability of f
given g,: p(f| g). We apply Bayes theorem:

f
)= PGP gy Pr

9n Yn

p(f g,

90of72

MAP estimate with logarithms SZ

f
J= PO AP gy e

Yn 9n

p(f g,

Logarithms help:

~in(p(f |gn»:—{"‘(p(g"'”pf)} ={in(p(g, |))+In(p, )-In(p, }

Py

We maximize the MAP of f | g, by minimizing:

n

argmin _{m{ p(gnpl f)p,

n

J} =argmin ~{in(p(g, 1 1))+In(p, )-In(p, }

We explicitly observe that the marginal distributiaf g, ,is not dependent on f. It
does not affect the minimization and it can be eefgld. It represents the statistical
distribution of the measurements alone.
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We maximize the MAP of f | g,, by minimizing:

MAP estimate with logarithms

arcmin —{in(p(g, 1 H)p, }=arcmin -{in(p(g, 1 1))+ n(p, }

Jo(gn,i;f) Likelihood = /

adherence to the data

Depending on the shape of the noise (inside the likelihood) and the a-

priori distribution of f(.), Jx(f), we get different solutions.

<

A-priori

3:(f)

Il of 72
. B . 21}
Gibb’s priors f
We often define the a-priori term, Jx(f), as Gibb’s prior:
1
—~U(f) 4o _1
1 ( ] u(f)
P, =_<€ o Z:J'eﬁ df =cost
Z %o
3.(F)=In(p; )==In(z)-Lu (f)
R P ﬁ
U(f) is also termed potential => J;(f) is a linear function of the potential U(f).
3 describes how fast the potential (the cost) decreases with U(f).
12 of 72
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Gaussian noise and a-priori term on %
norm of the solution

f =argmin -{in(p(g, 1 ) p, )} =argmin -{in(p(g, 1 ))+m(p, )=
argmin {3,(g,; f)+ 3.t} =

2
Oni ~ AfiH ]

We choose as a-priori term the squared norm of the function f, weighted by P.

Gaussian noise on the data: Jo(gn; f ): cost,+[z

1 2
1| e L
Py ~5 € P=I JR(f):cost+EHfi2H
f =argmin o, - + L5 |
13 of 72
Tikhonov regularization sz} f
f =argmin o, - + L5 |

BRI

(cf. Ridge regression and Levemberg-Marquardt optimization)

f :arfgmin [Z

It is a quadratic cost function. We find f minimizing with respect to f the cost function:
f:ATg, - ATAf + APTPf =0 => ATg, =(ATA+APTP)
f:ATg, -ATAf +APTPf =0 => ATg, = (ATA+APTP)f

poi f:aTg, =(ATA+ 1)

Poggio and Girosi, 1990
14 of 72
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- — Example dl
06 ”"\/“ ”é\/\ / \/’\”\r \, \“‘7\, YAV 0\ ‘r”\
il \“ {\ ' '\ {‘“'\\/{\ (x) h(x| )
VAVA \H ‘ ‘ \ Y(X ZZW X
) //\ \/\//Ag/\/\ &/\/\ Xg\/\ A \./\ \ — K X B
-0.2
-0.4
-0.6
o8 . g=Af con{fi}={w}
a “”
0 260 460 660 860 1600 12‘00 14‘00 16‘00 18‘00 2[;00
! Good reconstruction when no noise is present.
Z: Waved reconstruction with noise.
0.4
0.2
0 (AT AYLAT
w=(ATA)"ATg
0.4
-0.6
-0.8
-1
0 260 460 660 860 1600 12‘00 14‘00 1(;00 18‘00 2(;00 |50f 72
—=
i

Poisson case

Noisg = [IAf —g; ||

We know the statistical distribution of the noisewe now the statistical distribution of the
second term. In case of Poisson noise we have:

e (Af, )%
|

n;*

-In(L(g,; )= —ln[ﬁ p(g,;: f )] ==Y (- AT, +g,, In(A7) - In(g, 1)

For one pixel: p(g, f) =

i= i=1
To eliminate the factorial term, we normalize tikelihood by L(g, g.):

_|n[M = _ZN: (g, In(Af)-In(g,) + g, — Af ) = KL divergence

L(gn,gn) i=1

- z g, I”(i; +Af - gn] It is nota distance!

It is not linear

16 of 72




Gibbs priors and Regularization :%

arcmin —{in(p(g, 1 )p, }=arcmin—{in(p(g, | ))+In(p, }

Likelihood = / A-priori
adherence to the data /

gn,i - Afl Hz

Gaussian K (O')Z‘

. gni
P E Jn| =—~+ Af. —g,.
oisson i gﬂ,l (Af I gﬂ,lJ

J(f) = J,(f)+A:(F) In(f) = U()

17 of 72

What happens if noise is Poisson? :%

f =arcmin -{in(p(g, | 1), }=arcmin -{in(p(g, 1 ))+mn(p, }

Poisson noise model
Squared shape for the a-priori term

gni
In L+ Af — Q..
izgn,l (Af i gn,lj

(I APA[?

gn,i

f =argmin X g,, ln( v

+Af, -d,; ] + /lHPf H2 Regularization

No analytical solution
18 of 72
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Overview

Filtering images
MAP, Tikhonov and Poisson model of the noise
A-priori and Markov Random Fields

Cost function minimization

<&

19 of 72

hich is the most adequate p; for
images?

We usually ask to images to be smooth (we look at differential properties)

We look at the local gradient of the image: Of.

One possibility is to use the square of the I-2 norm of the gradient: || Of ||?

This is another form of Tikhonov regularization.

20 of 72
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Gibbs priors and Regularization :%

arcmin —{in(p(g, 1 )p, }=arcmin—{in(p(g, | ))+In(p, }

Likelihood = / Driori

adherence to the data

/ /

Gaussian K(O')Z‘ Oni ~ fi Hz

. gni
P E Jnf ===+ Af. —g. .
oisson i On,i (Af i ng

J(f) = J,(f)+A:(F) In(f) = U()

21 of 72

A-priori on the derivatives :

dll

arcmin —{in(p(g, 1 H)p, }=arcmin—{in(p(g, 1 1))+ n(p, }

J(F) = I, (F)+Ad(F) | 3.() = funzione|OOf |)

argmin {(af - g,)* + 0t Jargmin {|(af - g, )|+ AJf [}
f f

t: {oAT(Af - g,)+240f}=0

If we apporximate [If with the fiinite differences: f, - f, we get a linear system.

22 of 72
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Non-quadratic a-priori: total variation i—%

f =arcmin —{in(p(a, 1 ) p, }=arcmin —{in(p(g, 1 ))+In(p, }

Poisson noise model

gni
Jn| ===+ Af. —g..
izgn,l (Af i gn,|

adient and it is expressed in |, norm

ZJ(fo 1,7+ 1,7

The a-priori term is

i
f =argmin Z(Ilgn —Af||2+A,/i foi’

The derivative is not linear anymore because of the square root.

Total variation

23 of 72

ikhonov regularization - simulations %

DEEE k@ans € 08 =0

Iter = 50 - Solution - F = 212974741 6369

—F
e FREG

e S |

o

0 5 10 15 20 25 30 35 40 45 50
nlter

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model — A = 0.5
P is the gradient operator 24 of 72
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DEEs hRAaMe € 0B =D

Original

Denoising effect - lambda = 0.1p = 1

Iter = 50 - Solution - F = 1767624 3724

x10°
500 =
2 FREG
- FDATA
2z e
o w15
s e
1
05 fooeosiaes
500
0

0 5 10 15 20 25 30 35 40 45 6
nlter

No appreciable edge smoothing with total variation
Poisson noise model - A =0.5

P is the gradient operator

250f 72

Iter = 20 - Solution - F = 120825433.9031
—

Denoising effect - lambda = 0.5p = 2

200 4 =

35 E
100 e

FDATA
0 25
w 2 !
100 i — e

-200 1

0
300 B

0 2 4 6 8 10 12 14 16 18 20
nlter

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - A = 0.5
P is the gradient operator

26 of 72
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tal variation regularization — panorami%

images

DEEE kaafs[E 08 O

Original

Denoising effect - lambda = 0.6p= 1

Iter = 20 - Solution - F = 4336075 6946
——

T
100
50 5
o 4
50
2
100
-
150

No appreciable edge smoothing with total variation

Poisson noise model - A =0.5
P is the gradient operator

& 6 8 10 12 14 16 18 20
niter

27 of 72

Denoising effect - lambda = 0.1p = 2

Iter = 20 - Solution - F = 9759471 5548

t

Edge smoothing effect with Tikhonov-like regularization

Poisson noise model - A =0.1
P is the gradient operator

£ 6 8 10 12 14 16 18 20

niter

28 of 72
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Total variation — endo-oral images ﬁ

DEsEa& keane|E 0@ eo

e

Denoising eflect - lambda = 0.1p = 1

|

BN EERsan s BiE

Iter = 20 - Solution - F = 1373459 5776

sc10®

E

FREG

4 8 Bl 12 4 A 18
lter

No appreciable edge smoothing with total variation
Poisson noise model - A =0.1
P is the gradient operator

29 of 72
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p, = p(i,)) — p(i-1,))

http://ais-lab.dsi.unimi.it 1. Frosio, M. Lucchese, N. A. Borghese

Al

Noise

In the real image, most Of the areas are CharacCterized by ah (almost) hull
gradient horm;

We can for instance suppose that ||O0p|| is a random Variable with
(Gaussian distribution, zero meah and variahce equal to 2.

[Note that, in the noisy image, the norm Of the gradient assume higher
values > |ow | |Op|| means low noise!]

http://ais-lab.dsi.unimi.it 1. Frosio, M. Lucchese, N. A. Borghese
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Tikhonov Vs. TV (preview) dll

Filtered image Difference
. ] e ! :j‘ff'i —
Tikhohov => m{§j‘ ,jgjfsﬁ
it el o
Qriginal image o - f
' il |
w 5 |

http://ais-lab.dsi.unimi.it 33/46

1. Frosio, M. Lucchese, N. A. Borghese

Cost introduced by the regularzation terr%

= p=2r(Tikonov)
| —p=1(TV)
| = p=0.5

0 05 1 15 2 25 3
llgrac(g)I|

Cost increases quadratically with the local gradient in Tikhonov

340f 72
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A-priori f
We can insert in the a-priori term all the desieattharacteristic of the image: local smoothness,
edges, piece-wise constancy,....
The idea of defining a neighboring system is a rane:
Neighbor region of S
Images have a natural neighboring system: thegpbtelicture. We want to consider the local
properties of the image considering neighboringlsiXin particular differential properties -
our vision system is particularly tuning to gradghoth spatial and temporal). Ideas have
been borrowed from physics.
350f 72
. . 1
Neighboring System 2i
Let P be the set of pixels of the image: P B, ... po}
The neighboring system defined over P, S, is ddfaeH = {A¢| p,0p O P}, that has
the following properties:
An element is not a neighbor of itself [p A,
Mutuality of the neighboring relationship; pl Ay € = p O A,
(S, P) constitute a graph where P contains theqofiéne graph and S the links. An
image can be seen also as a graph.
Depending on the distance from p, different neighigpsystems can be defined:
o ol o] o
0 X o o X o
o
First order neighboring System Second order neighboring System
4-neighboring System 8-neighboring System 36 of 72

24/10/2014
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Clique

~Borrowed from phisics.

"Xl

6-Neighbors

= 8 o8 By

triple

quadruple

10-Neighbors

WOIOT 6

System

Aclique C, for (S, P), is defined as a subset of verticeS,an undirected graph, such that
every two vertices in the subset are connectechtsdge.

| can consider ordered sets of voxels, that areected to p through S.
Types of cliques: single-site, pairs of neighborsitgs, triples of neighboring sites,... up to
the cardinality ofAf 37of 72

Markov Random Field : f

Given (S, P) we can define a set of random valiiggn)} for each element defined by S,
that is in2N,,. Therefore we define mandom field , ’f; over S:

FN) = {f(m) [ mO N, } Op

Under the Markovian hypotheses:
P(f(p))2 0 Up
P(f(p) | 9(P-{p}) = P(f(p) | oN,)}

Positivity
Markovianity

2 expresses the fact that the probability of p rméisg a certain value, f (e.g. a certain
gradient), is the same considering in p all theepdf P but p, or only the neighbor
pixels, that is the value of f depends only onvialeie of the pixels if\V, and not in p.

the random fieldf is namedM arkov Random Field.

380f 72

24/10/2014
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Energy in a Markov Random Field ﬁ

A “potential” function,q(f), can be defined for a MRF. This is a scalaueahat is a
function of the random value associated to thelgpifia all the possible elements of
a clique:

o =2, f(p)

jdc

If we consider all the possible cliques defineddach element p, we can define a
potential energy function associated to the MRF:

un =Y. al

The higher is the potential energy, the lower éphobability that the set of random
values of the elements of the cliques is realigtedt, is the higher is the penalization
for the associated configuration.

We want to go towards minimum energy.

390of 72

. . al
Gibbs prior jz 2i
we consider all the possible cliqgues defineddach element p, we can define a
potential energy function associated to the MRF:

Uh= > a(f)

cc

The higher is the potential energy, the lower é&ghobability that the set of random
values of the elements of the cliques is realitteat, is the higher is the penalization
for the associated configuration.

This is well captured by the Gibbs distributiorgttdescribes the probability of a
certain configuration to occur. It is a functiorpexentially decreasing of U:

P(f) = le{_;u m}
Z

P(f) is a Gibbs random field, Hammersley-Clifforlebrem (1971)3 regulates the
decrease in probability and it is associated véthgerature in physics. Z is a
normalization constant. NB to define Gibbs randatu$, P(f) > 0, P(f)> 0 U(f)
- oo: there are not configurations with O probability.

40 of 72
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Gibbs priors and Regularization :ﬁ

arcmin -{in(p(g, 1 1)p, }=arcmin—{in(p(g, 1 ))+n(p, }

Likelihood = /

A-priori

adherence to the data /

Gaussian K(O')ZHgn,i - fi Hz

1
_In —

. gni
P 2 Jn| =—~+ Af. —g,.
oisson i gn,l ( Af I gH,IJ

J(f) = J,(f)+A:(F) In(f) = U()

41 of 72

Role of A _—Z,

K(U)Zugn,i - Af, H2 ~In le{_;’u (f)}
! Z

J(1) = Jo(1) + Ade(T)

A incorporates different elements here:

- the standard deviation of the noise in the likelihood

- the “temperature”, that is the decrease in the energy of the configurations with
their cost (B)

- the normalized constant Z.

A has been investigated in the classical regularization theory (Engl et al., 1996),
but not as deep in the Bayesian framework =» A is set experimentally through
cross-validation.

42 of 72
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ow to set the regularization parameterf? 4i

Analysis of the residual after the estimate = Af — g
» The residual should be equal to the noise distribution

Gaussian case:
* Aisincreased until (1, r) = 22 (||r]|? = 0?)
» Sample covariance is equal to distribution covariance

Poisson case:

* r1,tends to be larger, the larger is g;.
e Aisincreased until |r]2/g->1

43 0of 72

Choice of the Gibbs priors ﬁ

We choosed| APf||? as a quadratic functional, but not specified P.

P is ofted chosen as a smoothing operator. Thenad#dads that the noise added to the
image is often white (both Gaussian and Poissoal) the image as there is no
correlation between adjacent pixels. Thereforspeial content is unform and with a
larger bandwidth that the signal.

As a smoothing operator P is often a differentfg@mator, which penalizes edges.
Je()=> @)
cc
k is the order of the derivative

@. can beJnorm (total variation), squared (Tikhonov)

k = 2 difference of gradient® piecewise linear areas.
k = 3 difference of Hessiat®» piecewise squared.
Neighbor of order higher than 2.

44 of 72
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Quadratic Priors with k =0 Jﬁf f

k = 0 — No derivative, the same gray level — single site cliques.

Je(f)=2 @Ad"f) = (d°F)* = > f(p)*

cc cc pOP
It has been applied to both Poisson and Gaussian noise models

Reduces bright spots and biases the solution to low intensity values.

45 of 72

Quadratic Priors with k = 1 ﬁ

k =1 — First order derivatives — pair-sites cliques.

3=y dd) =Y S pdd)P=3 ¥ MJ

cc pOP MON, pOP MON -, d(p,m)

d(p,m) takes into account anisotropies in computing the distance.

If we consider ¢(.) a squared function, we have another form of Tikhonov regularization:

pOP MO, d(p,m)

46 of 72
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Quadratic Priors with k =1 Jﬁ} f

k =1 — First order derivatives — pair-sites cliques.

pUP MO, d(p,m)

If we consider ¢.) a squared function, we have another form of Tikhonov regularization:

Il P2
P is the convolution with the Laplacian operator: __ﬂ _ _Q_
0 -1 0 % 2
a1 -1 4+242 -1
V2 V2
0 -1 0 2 Tt T2

First order neighboring System

Second order neighboring System
4-neighboring System

8-neighboring System

47 of 72

'Non-quadratic potential functions, k = Jﬁji

Quadratic functions priors imposes smoothness atere. Large true gradients of the
solution are therefore penalized smoothing sharp edges.

In imaging objects tend to be piecewise smoothdiifgrent pieces of objects are
separated by more or less sharp edges. We wamtadtotls inside the object but not
the edge. A parallel worthwhile to be investigatedith anisotropic diffusion
(Koenderink, 1987; Perona&Malik, 1990).

We search different potential functions (Geman&Mg€| 85; Charbonnier et al.,
1994, 1997; Hebert&Lehay, 1989).

48 of 72
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Non-quadratic potentials
(Charbonier et al., 1997)

. @)2=0 [t ®0)=0 Derives from the definition of potential

. o(t)=2=0 [t Semi-monotone derivatives

. @) = @-t) Positive and negative gradients are equally
considered

. @ oOct This is to avoid instability.

Up to now quadratic potentials are OK

% The potential increase rate should decrease with t.
lim % =0 The potential increase rate should decrease for all
tmw

t (at least for large values of t)

|![];~| % =cost>0

The potential increases at least linearly for t =0

49 of 72
Few non-quadratic functions dg
. .. |
(Vicedomini 2008) <
Regularization Potential Expression of Expression of | Convex
name function o(t) U(t) = ¢'(t)/2t
Quadratic-Potential Por t? 1 yes
AT al L _
Geman-McClure Can T+ m no
Hebert-ILeahy YHL log(1 + %) ﬁ; no
Hubér 0 2, [t <1 1, It <1 ves
S AN R 2t -1, [t|>1 yitl, [t>1 | %
Hyper-Surface 2V1+t2 -2 ﬁ yes
Asymptotic linear behavior
Asymptotic log-like behavior Why not simply 1/t2 2
50 of 72
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F)
Results ’
il
300 200
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o
=
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(D)u 1000 2000 3000 4000 5000 6000

(E) 0 1000 2000 3000 4000 5000 G000

Position (nm)

(F)

1000 2000 3000 4000 5000 6000
Position (nm)

Summary

<&

MAP estimate can be seen as a statistical verdicggalarization.

Theregularization term can be derived from the potential energy assoctateah
adequate neighbor system defined over the objertdeer the image).

Under this hypothesis the value assumed by theeglenof the object to be
reconstructed (e.g. restored or filtered imagejasgnt a MRF.

Different neighbor systems and different potertiaktions allow defining different
properties of the object.

For quadratic potential functions, Tikhonov regizder are derived.

The discrepancy term for the data represents the likelihood and canraotadate
different statistical models: Poison, Gaussianvenemixture models.

52 of 72
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o) =[O

q
2

Solution is one of the potentials functions above, or a numerical solution:

JREG(fi):\/%+%+----+£ €=2.22x1016
X ay

Overview 2i
Filtering images
MAP, Tikhonov and Poisson model of the noise
A-priori and Markov Random Fields
Cost function minimization
53 of 72
. . 2
Regularization term 2i

For q =1, it has a singularity in the origin for which its derivative cannot be computed.
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Simulated images %

Asiouun ‘jeulbliQ
Asiou ‘|euibuo

55 0of 72

Gradient Descendent is slow %

Algorithm
Set u® = {g}
J o I
Compute 0J =| —J,....—J
d“Il d'IN

Update u(k+1) — u(k) _ l]D J

n is a scalar parameter (damping factor), optimized at each iteration, such
as it is guaranteed that J decreases (line search).

Time expensive: ~ 210s (with Matlab) on 500x500de®a

We can improve the algorithm and / or the gradoemputation
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One-step late EM (Green, 1990) :Z‘

We derive it with fixed point optimization. Let esnsider the cost function for Poisson
noise:

(g 19)= 20, n(a)- 0} + 4200

i=1

We suppose all the pixel constant and the variation of each pixel are
accumulated and applied to the next step (one-step late).

a‘](gnk |gk) 0 ) Onk )
A S UL S VA SR | - AE—J = 1+A0—1J =0
ag, agk{ [gn,k n(gk) gk]}+ 09, R(gk) 9. +1+ 09, R(gk)

This cannot be solved directly, but it can be solved using fixed point iteration:

“Ob14089 5 (g)=0= %% 214009 3 (g) =g = Sk
0 9 9

O« Ok Ok Ok 1+ A Ela*‘]R(gk)
Ok

57 of 72

Expectation Maximization ﬁ

From emission Tomography (Green, 1990; Panin £1889)

u(new) _ Ui(0|d) hi,jzj
i old
zhi‘j +/1iJREG(u(oId)) j th’juﬁ )
In our case j aui K

H=[h ]=1
The previous formula becomes
G = ~ %
1+/]£JREG(U(OM))
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Observations f

Semi-convergence properties.

Damping of the solution is required.
Damped EM, &1=(1-t)x+t*EM(x¥) (damping, relaxation, reduction of the steggtai}

Solutions have been recently proposed for PET imégair&Zahnen, 2006).

x10° Gradient VS EMB - 4 = 0.05
T

-22651 T
Gradient

— EM

Large increase in e |\ |
speed has been ;

registered.
-22852+ |

Sensitive to number of
Steps. - 22852

-22852

-2.2653

22654 L L L L
(] 10 20 30 40 50 60
Iterations

<&

Centered gradient is bad f

0O -1 O
-1 0 +1 If used centered gradient to computer the a-
priori, we obtain a checkerboard effect

0O +1 O
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We consider only two gradients: North-Center + West-Center
I29(%., ¥ ), = 9. (. ¥, + 9, (%, v, ) +& =
=\la0x, vi) -9 =1y )F +[a(x, ) - glx, v -1 +&

4 neighbors gradient

8 neighbors gradient

6l of 72

Why not to change the norm? sz} f

We consider only two gradients: North-Center + West-Center

HDg(Xi’yi )Hl = ‘gx(xi!yi )‘ +‘gy(xi'yi )‘ = ‘g(xi’yi)_ g(xi -1y, )‘+‘g(xi’yi)_ g(xi’yi _1X

N
0 O LY
03,(g) 29k afiog(x, v, ), +IEgl +1y,), +I0a(,. v, +3)]

g, 0g, og,
0
=£U9(Xk1yk)_g(xk -1 ka +‘g(xk1yk)_g(xklyk _1)‘]+
K
0
Eﬂg(xk +1va)_g(kaYk)‘+‘g(xk +1 yk)_g(xk +lYkX]+
P
0
Hg(xk’yk +l)_g(xk -1y, +1X +‘g(xk'yk +1)_9(Xk:yk)‘]:

agk
3 Sign[gx(xkayk)]"'Sign[gy(Xk:yk)]_Sign[gx(Xk +1'yk)]_5ign[gy(xk’yk +1)]

We do not need € anymore but we do not have continuity in the

origin. May be we can relax Charbonnier et al. conditions....
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Experimental results

23

21

19

17

15

13

11

RMSE
1l EM1

e Il EM7

\ r ~—4—Gradient
p —-—EM1
e 7/ A EM3

—=EM2

A // ——EM7
o EMS

Compiled code

o

Execution Time

0.001 0.01 0.02 0.05 0.1 57

u Gradient

[I.ll, EM2 - centered gradient

Increase in speed of ~ 5x 0
Mu £ 0.02

WEMI
EM3
1EM2
WEM7
EM5

Beyond EM

N N
- _ q
39, 19)=-2{gnn(g) - a.}+ 2> |0g
i=1 i=1
is an optimization problem, in which g has two interesting properties:

g(p) 20
> g(p) = cost
p

Flux conservation (preservation of the
intensity of the image)

Moreover, J(.) is supposed convex. Under these hypotheses, the so
Called Kuhn-Tucker condition for the (unique) minimum should hold:

g*0J(9% 9,) =0

g*20  0J(g5g,)20

o
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Split gradient (Lanteri, 2002) @ 2i

(g 1)= 20, n(a)- 0} + 4200

i=1

Singularity when gradientis 0 and q < 2.
The idea is to obtain a term > O strictly at the denominator.

0J(g; gn) = U(g: gn) + V(g; gn) with U(g; gn) = 0; V(g; gn) >0
Kuhn-Tucker condition becomes:
g*0J(g* gn) =0 =» g*(U(g; gn) +V(g; gn)) =0

We can write fixed point iteration and obtain:

g®b = g(t) U(g; gn) / V(g; gn))

65 of 72

Split-gradient Algorithm f

Inizialization. Choose @, that can be coincident with gnd compute the flux, that is
the ¢ =2g,;.

Iteration in two steps: update + normalization.

Update: §en =g +a(t)g(t)[u (9:9,) TV(Q; gn)J
V(9:9,)

c=3.9“"(p)
p

Normalization through flux conservation:

+ C Aq+
g(t 1)(p) - C(t+1) g(t 1)(p)
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Relaxed Split-gradient Algorithm J:%‘
(@=1)

Inizialization. Choose @, that can be coincident with, gnd compute the flux, that is
the ¢ =Zg,;.

Iteration in two steps: update + normalization.

Update: g(t+l) - g(t) +a(t)g(t)(u (g1\g/n()g_g/()gy gn)J: (t)(l\J/ggl; gn))j

C(t+l) - Z g (t+1) ( p)
p

Normalization through flux conservation:

+ c A (t+
g(t 1)(p) = < g(t 1)(p)

that has a very attractive multiplicative factonigis also a Scaled gradient
algorithm (Bertero et al., 2008) 67 of 72

Determination of U(.) and V{(.) ﬁ

N N ;
‘J(gn,i | gi)= _Z{gn,i In(gi)_ gi}+/]ZHDgi Hz =J, +Adg
=

i=1

For the likelihood term: 0OJ,

U \%
Gaussian case 29, 29

2ATg, 2(ATAg + b)
Poisson case 0./9 1

ATg,/ (Ag +b)

For the regularization term: 0Jg the derivatives of the potential function have to
be considered (Bertero et al., in preparation) and grouped into positive and

strictly positive values. 68 of 72
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0.8

Faster convergence for large number of &
iterates (from Bertero et al. 2008)

0.7F

06F

051

Error

04+

03F

02F

0.1 1

EM
= = =EM_MATLAB

10° 10

Iterations

Computational time: 54.5s, 7.7s, 4.0s for a 256 x 256 image, in Matlab.
Results obtained only with Jo - EM solution.

4
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DEEE KRGS E(0E O

Denaising effect - lambda = 0.5p = 1

100
50
0
-50
-100
-150

Real-time filtering of panoramic imag%

Iter = 20 - Solution - F = 4386075 6946
——y

»

DATA

4

6 8 10 12 14 16 18 20
her

No appreciable edge smoothing with total variation
Poisson noise model - A =0.5
P is the gradient operator
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Application for intensive algebraic metho%

Denoising — Bayesian filtering
Deconvolution (tomosynthesis, volumetric recongtarcfrom limited angle of view)
Deconvolution (CB-CT, FanBeam CT)

Amenable to be implemented on CUDA architectudeReal-time volumetric
reconstruction.
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Filtering images
MAP, Tikhonov and Poisson model of the noise
A-priori and Markov Random Fields
Cost function minimization
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