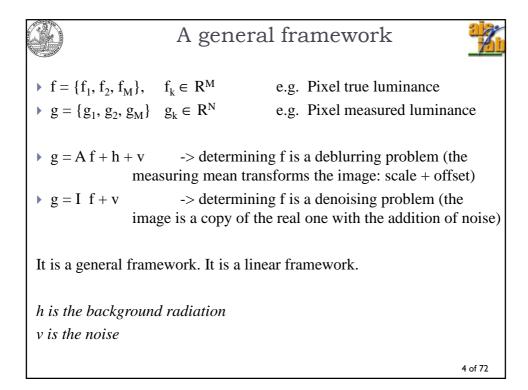
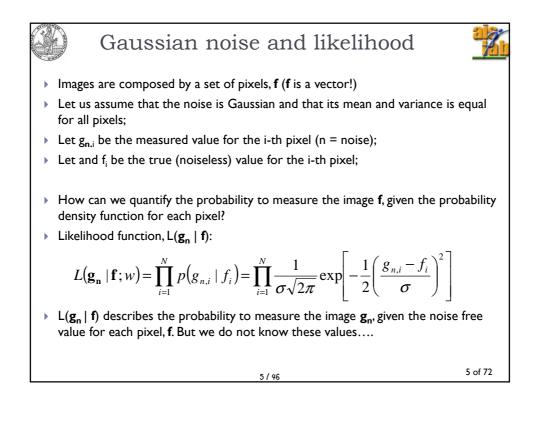
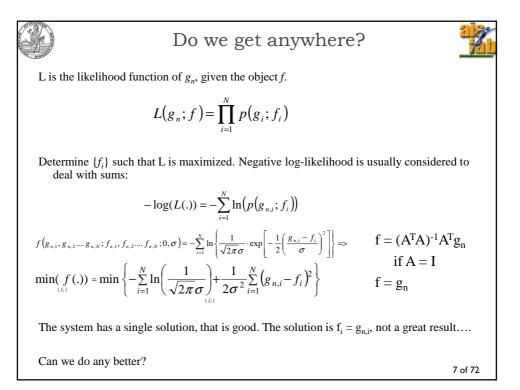


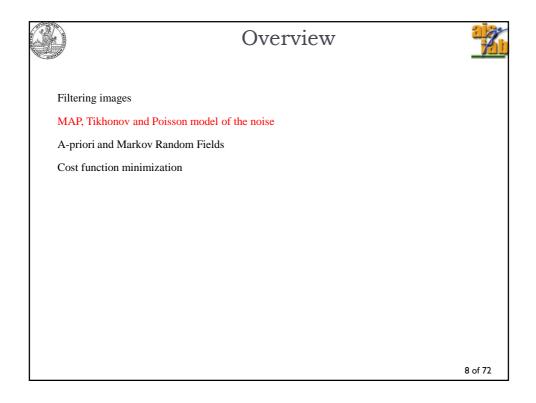
	Images are corrupted by noise	
i) When measureme some physical paran performed, corruption canno avoided.	neter is noise	
ii) Each pixel of a digita measures a numb photons.		
Therefore, from i) and ii)	
Images are Corrupt noise!	ed by	
http://ais-lab.dsi.unimi.it	3 / 46	

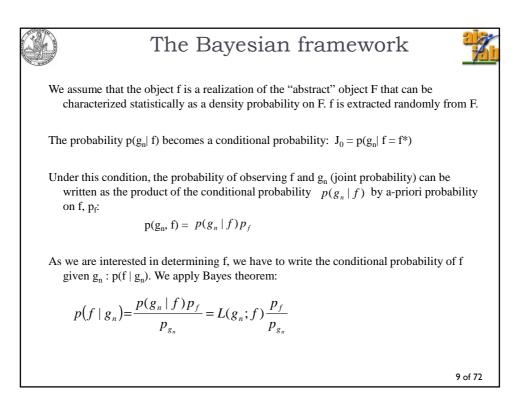


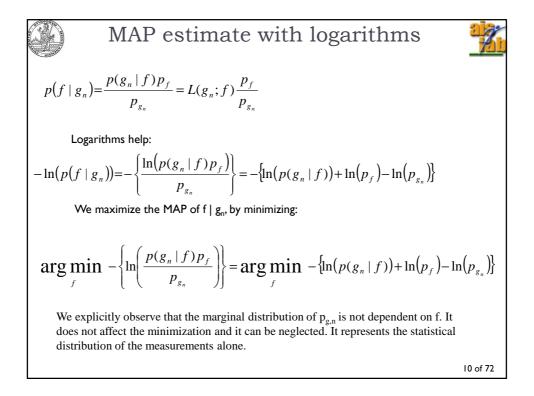


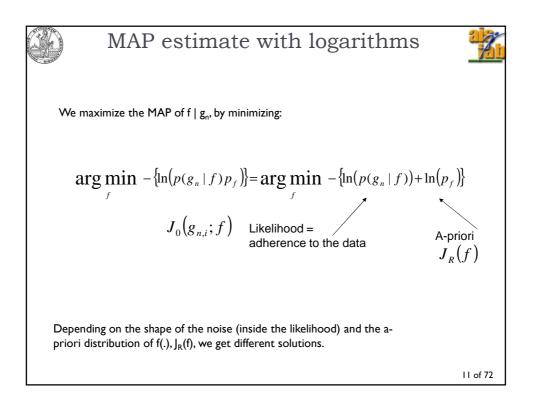
Statistical formulation of image restauration Measuring an image \mathbf{g} taken from an object, \mathbf{f} , we want to determine \mathbf{f} , when \mathbf{g} is corrupted by noise: $\mathbf{g}_{\mathbf{n}} = \mathbf{A}\mathbf{f} + \mathbf{b} + noise \rightarrow \mathbf{f}$? It is a typical inverse problem. A is a linear operator that describes the transformation (mapping) from **f** to **g** (e.g. perspective projection, sensor transfer function, $\mathbf{A} = \mathbf{I}$ for denoising ...). **b** is the background radiation. It is the measure **g**, when no signal arrives to the sensor. Each pixel is considered an independent process (white noise). For each pixel therefore, we want to find **f** that maximize: $p(\mathbf{g}_n; \mathbf{f})$ Being the pixels independent, the total probability can be written in terms of product of independent probabilities (likelihood function): $L(g_n; f) = \prod_{i=1}^{N} p(g_{n,i}; f_i)$ L is the likelihood function of g_n , given the object f. 6 of 72

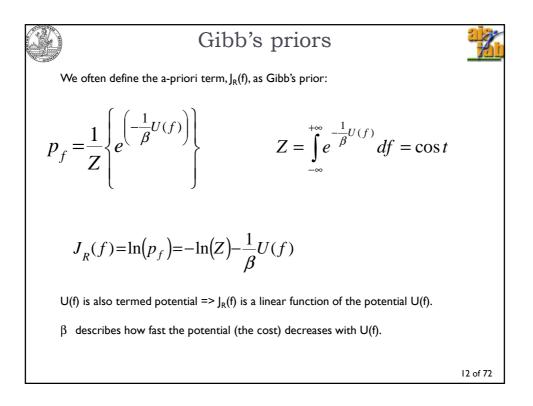




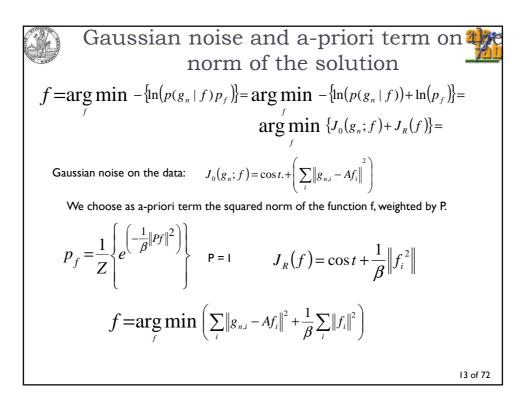


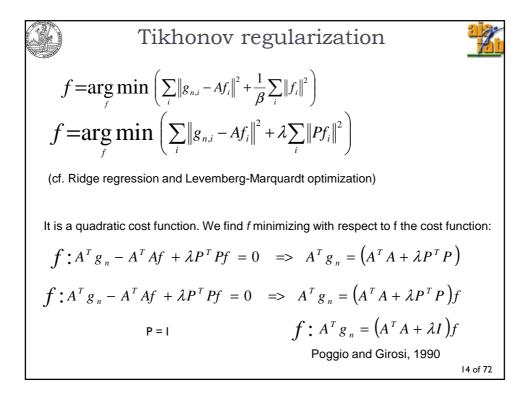


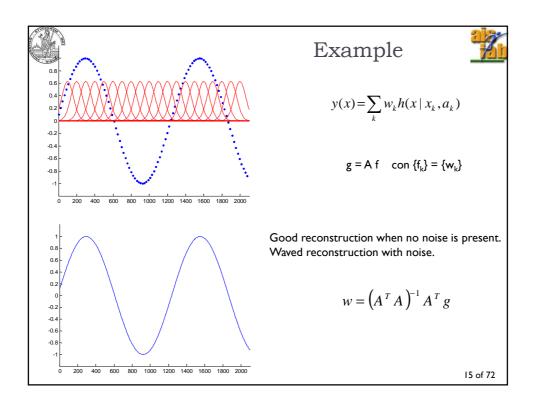


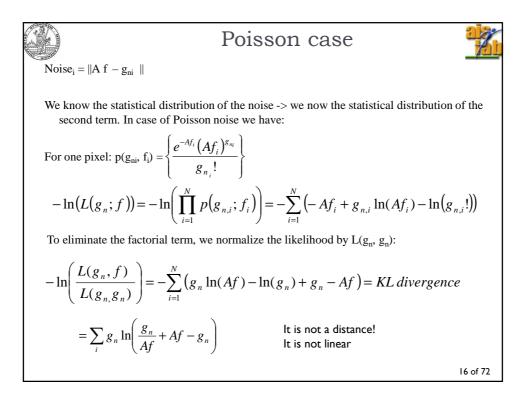


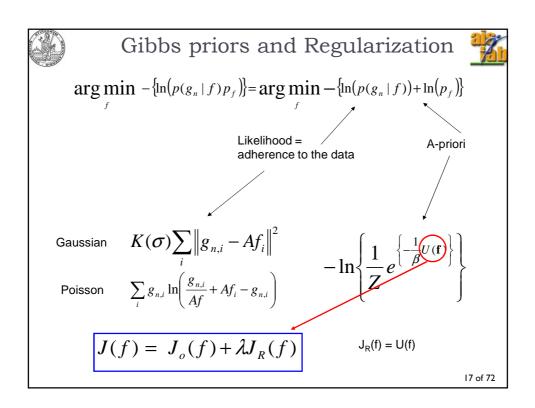
24/10/2014

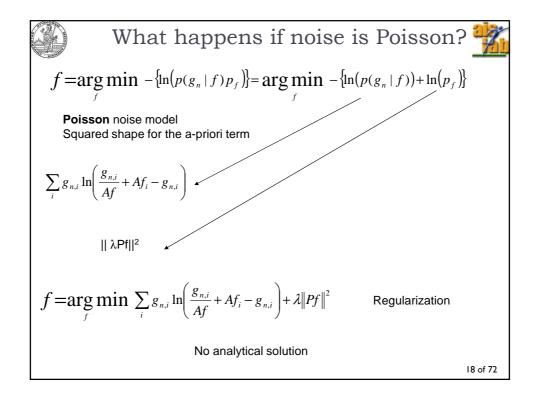


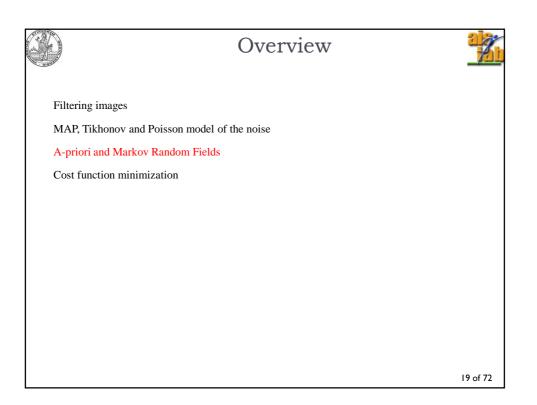


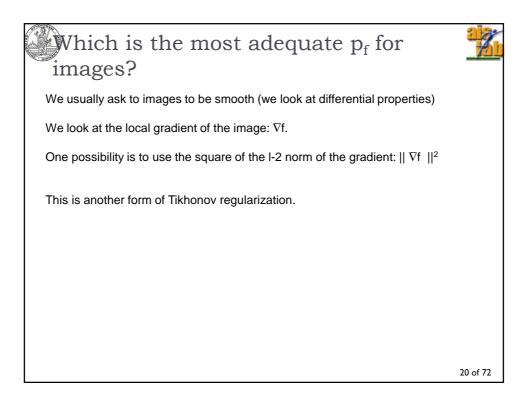


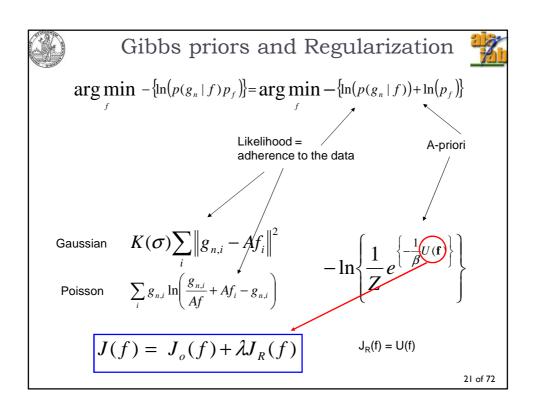


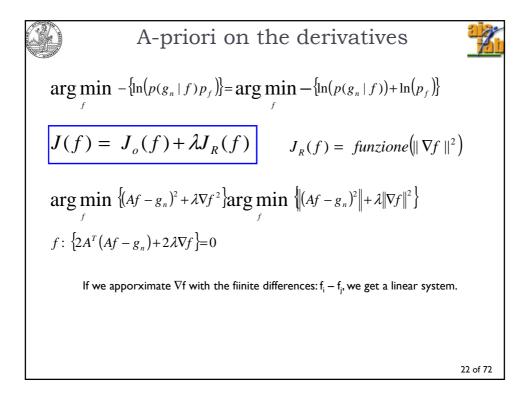


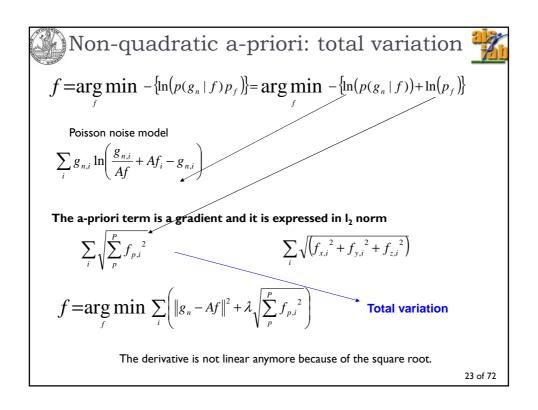


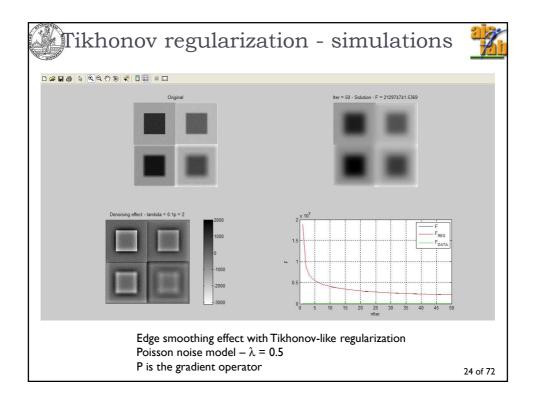


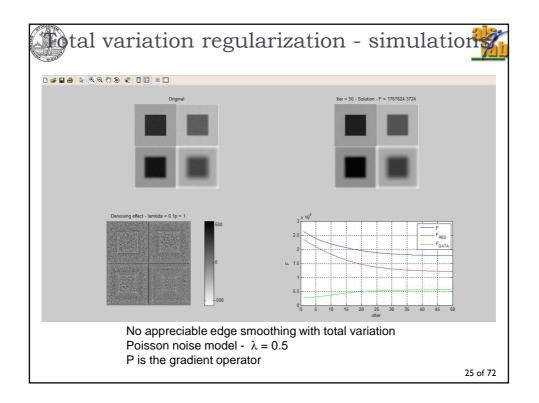


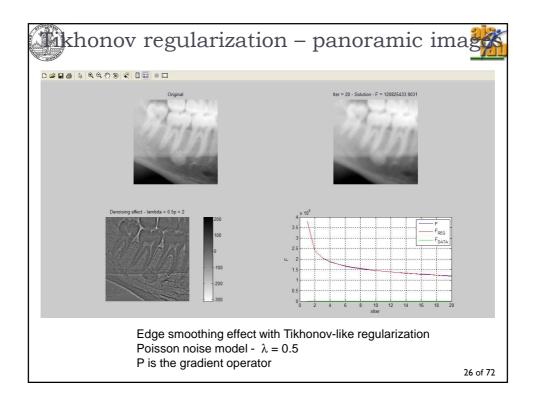


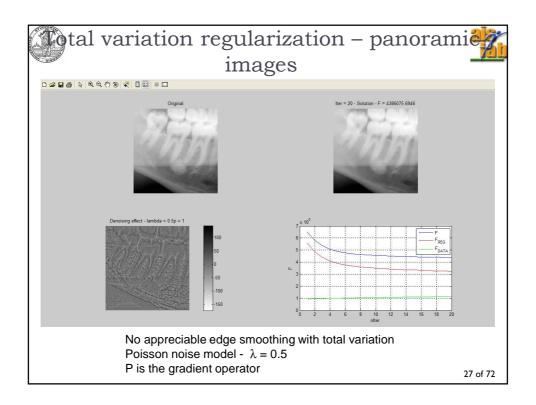


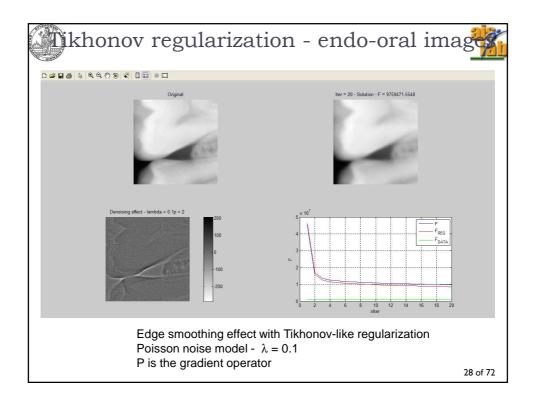


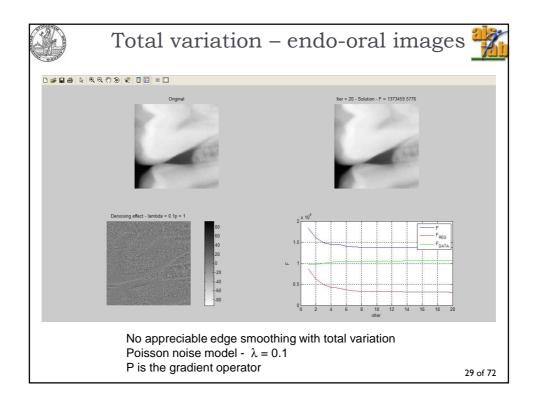


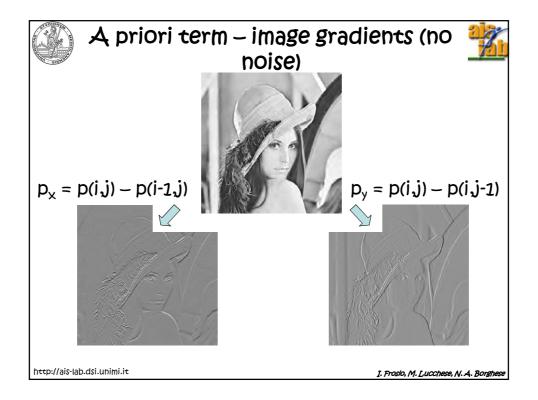


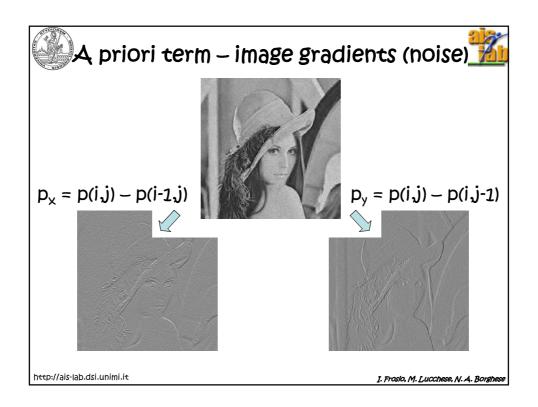


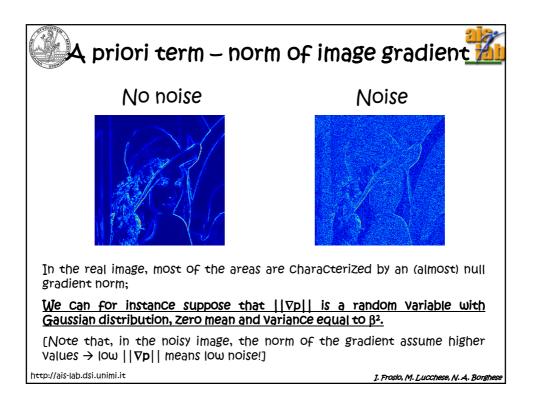


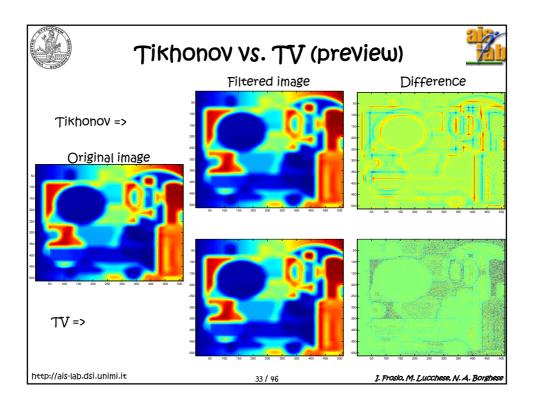




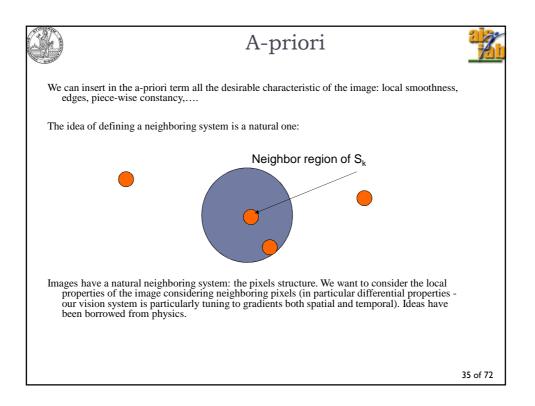




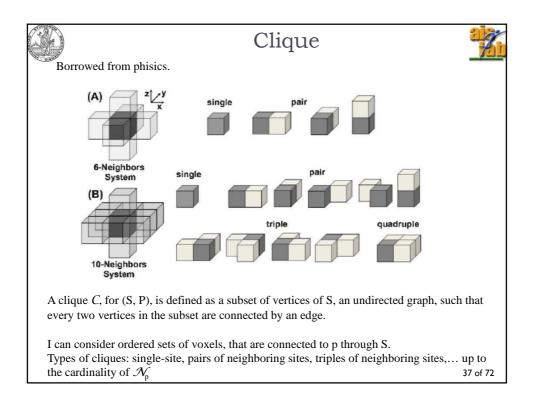




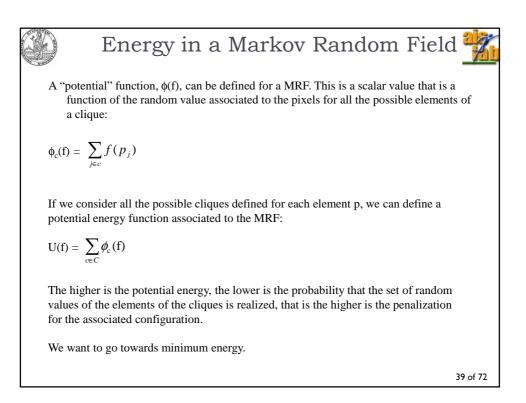


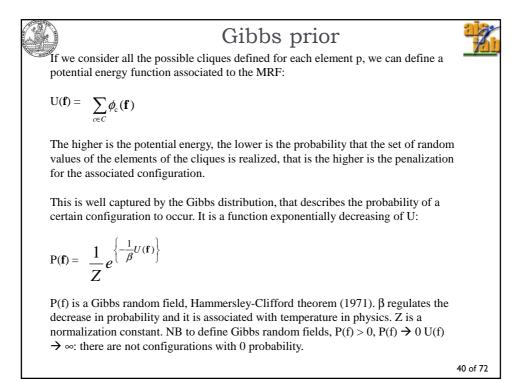


	Neight	ooring	g System	2	<u>Z.</u>		
Let P be the set of p	Let P be the set of pixels of the image: $P = \{p_1, p_2, \dots, p_P\}$						
the following pro An element is not a	The neighboring system defined over P, S, is defined as $H = \{\mathcal{N}_p p, \forall p \in P\}$, that has the following properties: An element is not a neighbor of itself: $p_k \notin \mathcal{N}_{pk}$						
 Mutuality of the neighboring relationship: p_k ∈ N_{pj} ← → p_j ∈ N_{pk} (S, P) constitute a graph where P contains the nodes of the graph and S the links. An image can be seen also as a graph. 							
Depending on the distance from p, different neighboring systems can be defined:							
o o x o o x o	-		0 0 0 X 0 0	0 0 0			
First order neighb 4-neighboring	0,	Seco	nd order neighbori 8-neighboring Sys		72		

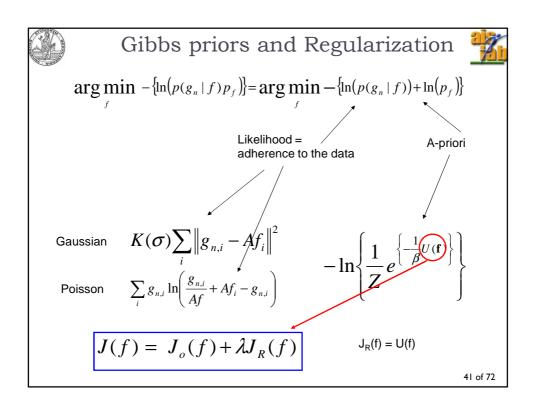


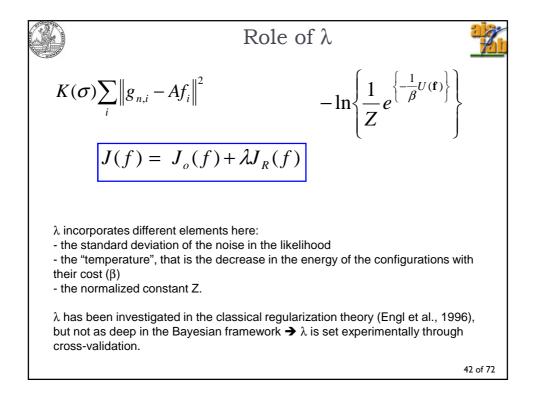
Markov Random Field
Given (S, P) we can define a set of random values, $\{f_k(m)\}$ for each element defined by S, that is in \mathcal{N}_p . Therefore we define a random field , \mathcal{F} , over S:
$\mathcal{F}(\mathcal{N}_{p}) = \{f_{k}(m) \mid m \in \mathcal{N}_{p}\} \forall p$
Under the Markovian hypotheses:
$P(f(p)) \ge 0 \forall p$ Positivity
$P(f(p) g(P-\{p\}) = P(f(p) g(\mathcal{N}_p)) $ Markovianity
2 expresses the fact that the probability of p assuming a certain value, f (e.g. a certain gradient), is the same considering in p all the pixel of P but p, or only the neighbor pixels, that is the value of f depends only on the value of the pixels in \mathcal{N}_p and not in p.
the random field ${\mathcal F}$ is named Markov Random Field .
38 of 72

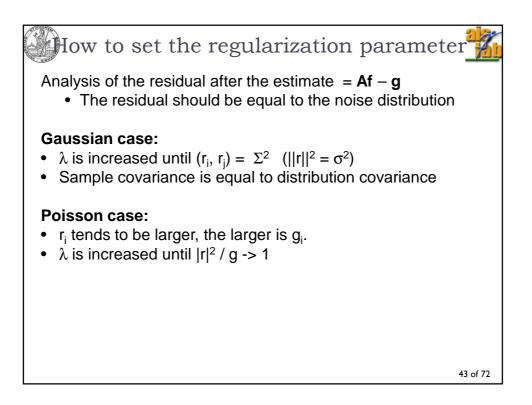


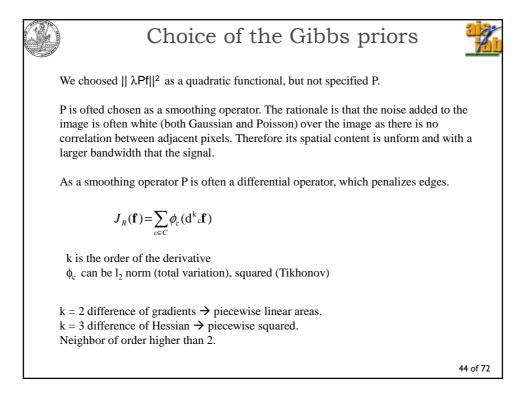


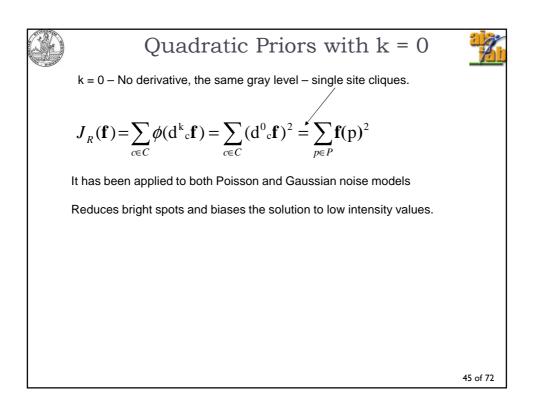
20



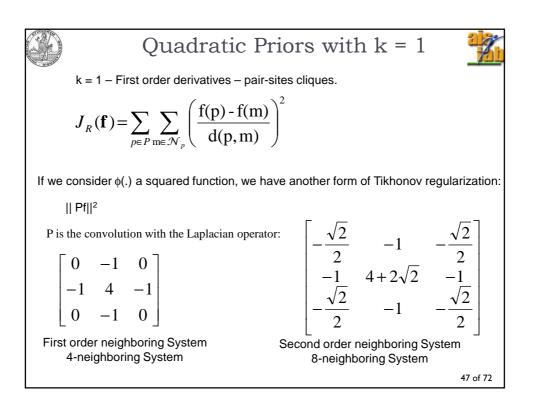


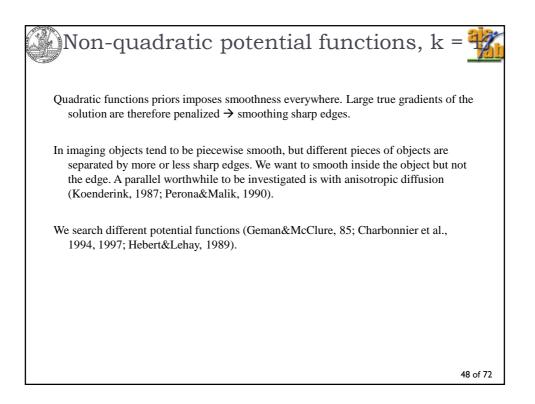


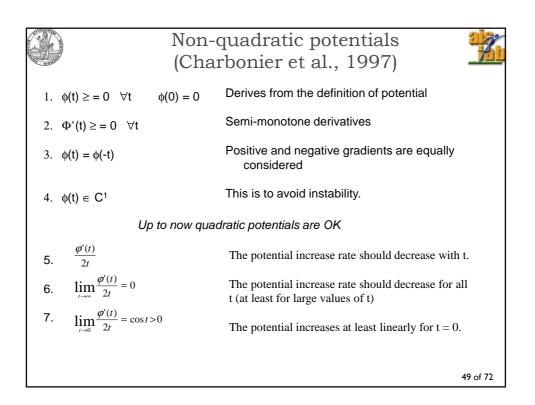




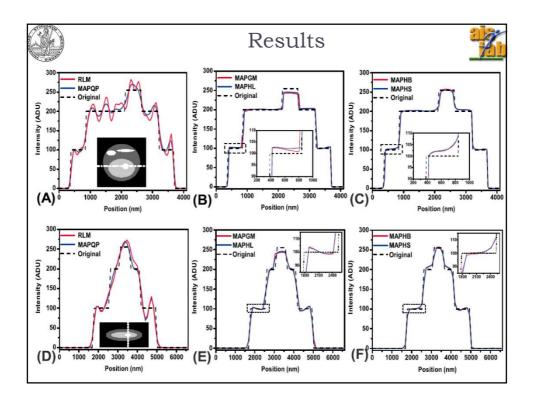
23

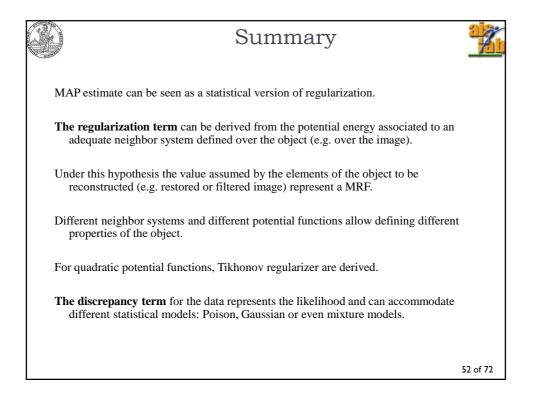


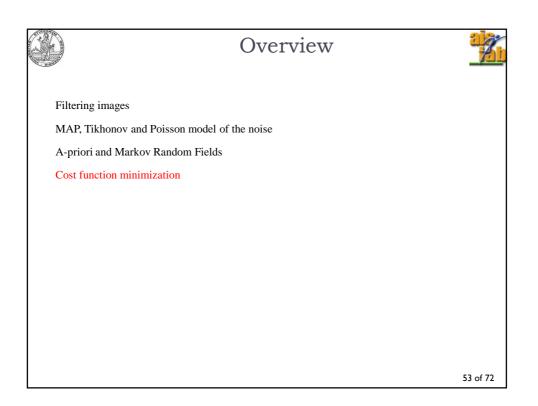


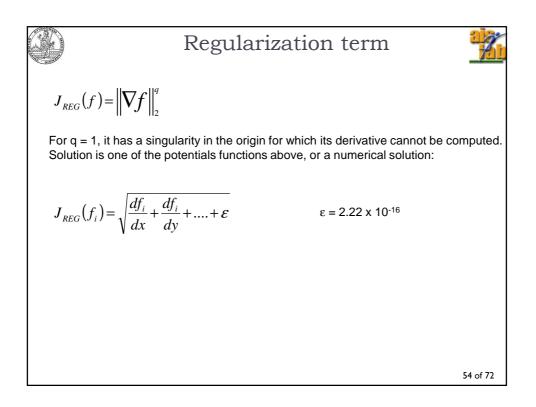


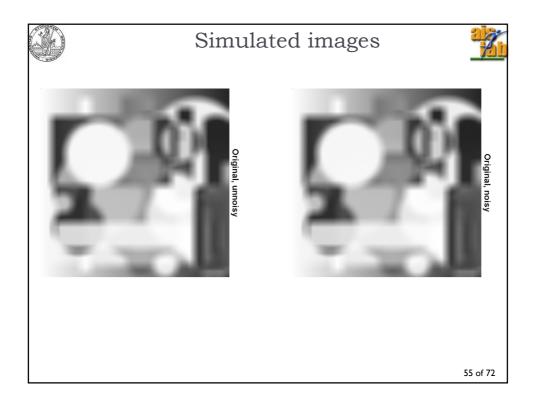
F	Few non-quadratic functions (Vicedomini 2008)							
Regularization	Potential function	Expression of $\varphi(t)$	Expression of $\psi(t) = \varphi'(t)/2t$	Convex				
Quadratic-Potential	φ_{QP}	t^2	1	yes				
Geman-McClure	φ_{GM}	$\frac{t^2}{1+t^2}$	$\frac{1}{(1+t^2)^2}$	no				
Hebert-Leahy	φ_{HL}	$\log(1+t^2)$	$\frac{1}{1+t^2}$	no				
Huber	φ_{HB}	$\left\{ \begin{array}{ll} t^2, & t \leq 1 \\ 2 t -1, & t > 1 \end{array} \right.$	$\left\{ \begin{array}{ll} 1, & t \leq 1 \\ 1/ t , & t > 1 \end{array} \right.$	yes				
Hyper-Surface	<i>QHS</i>	$2\sqrt{1+t^2}-2$	$\frac{1}{\sqrt{1+t^2}}$	yes				
	Asymptotic linear behavior							
Asy	Why not simply	$\sqrt{t^2}$? 50 of 72						

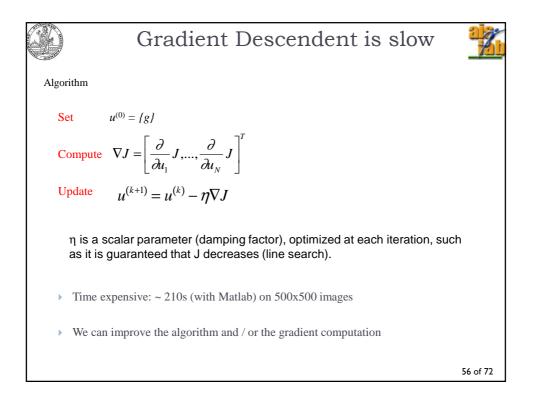


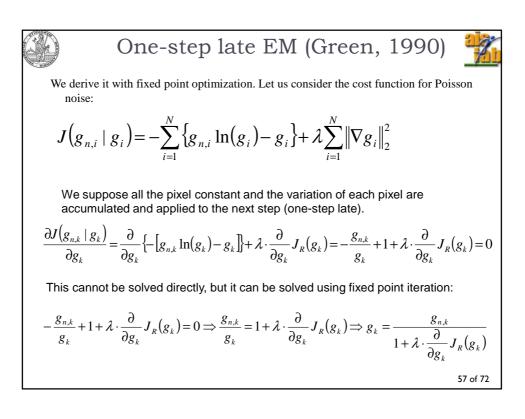


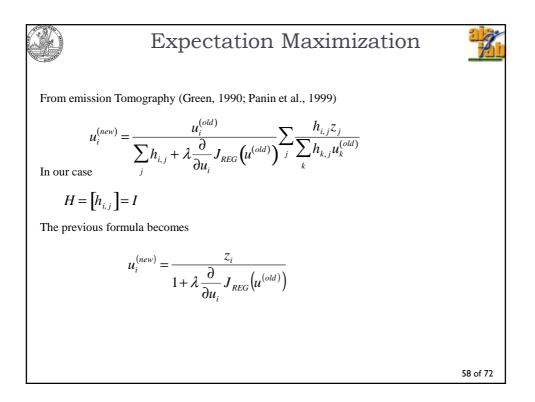


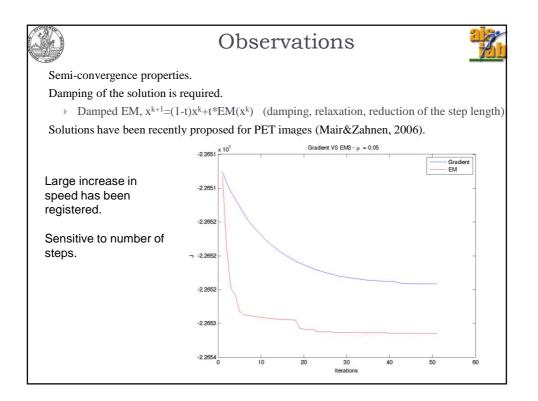


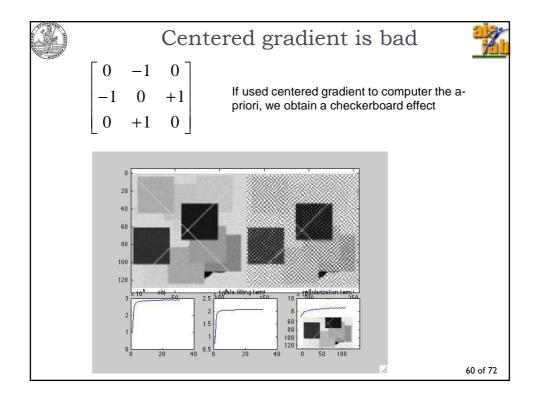


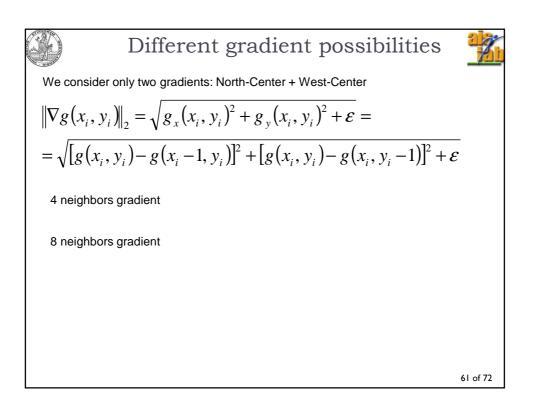


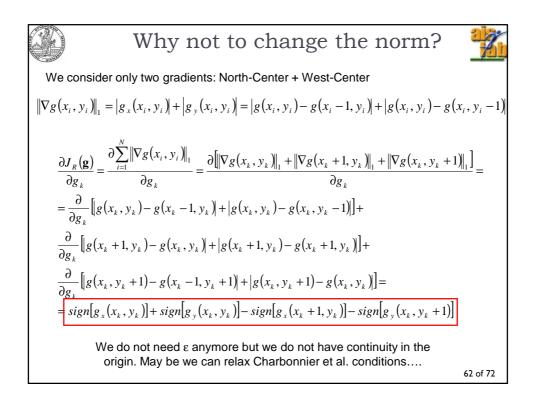


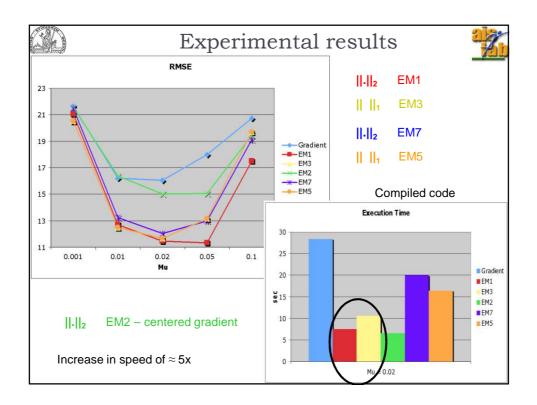


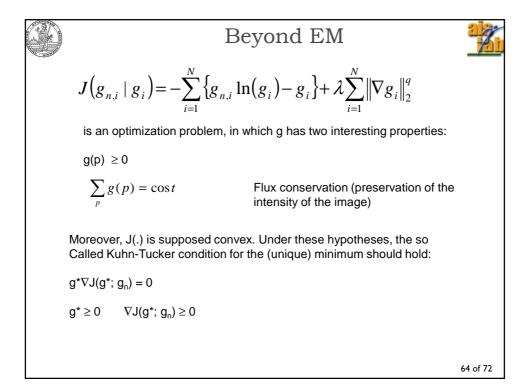




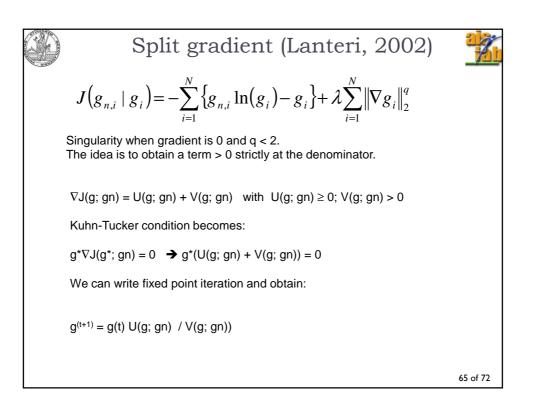


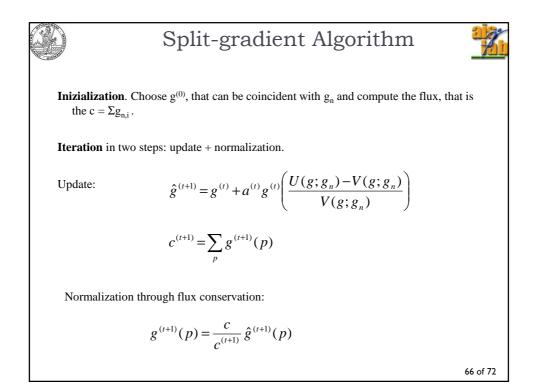






24/10/2014





33

